Resynchronized rhythmic oscillations of gut microbiota drive time-restricted feeding induced nonalcoholic steatohepatitis alleviation
Jiafeng Xia,
Wanru Guo,
Ming Hu,
Xiuyuan Jin,
Sitong Zhang,
Boqiang Liu,
Hangyuan Qiu,
Kaicen Wang,
Aoxiang Zhuge,
Shengjie Li,
Zhongkang Ji,
Lanjuan Li,
Kaijin Xu
Affiliations
Jiafeng Xia
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Wanru Guo
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Ming Hu
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Xiuyuan Jin
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Sitong Zhang
Department of General Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Boqiang Liu
Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Hangyuan Qiu
Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
Kaicen Wang
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Aoxiang Zhuge
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Shengjie Li
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Zhongkang Ji
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Lanjuan Li
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
Kaijin Xu
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
ABSTRACTWith the drive of the endogenous circadian clock and external cues such as feeding behavior, the microbial community generates rhythmic oscillations in composition and function. Microbial oscillations are crucial in orchestrating host metabolic homeostasis during the predictable 24-hour diurnal cycle. A time-restricted feeding (TRF) regimen is a promising dietary strategy to optimize energy utilization, alleviate metabolic syndrome and reinforce microbial cyclical fluctuations. However, the causative relationship between reinforced microbial rhythmicity and TRF-induced metabolic improvement remains elusive. In this study, we corroborated that the TRF regimen notably alleviated obesity and nonalcoholic steatohepatitis (NASH) with reinstated rhythmicity of genera such as Lactobacillus, Mucispirillum, Acetatifactor, and Lachnoclostridium. The reshaped microbial oscillations correlate with cyclical fluctuations in intestinal amino acids. Furthermore, fecal microbiota transplantation (FMT) indicated that only the TRF feeding phase-derived microbiota, but not the TRF fasting phase-derived microbiota, could protect mice from NASH and reinstate microbial rhythmicity, confirming that the microbiota improved NASH in a time-of-day-specific manner. The unique role of the TRF-feeding phase-derived microbiota was accompanied by regulation of the serotonergic synapse pathway and rejuvenation of the microbial production of indole derivatives. Our results revealed the discrepant characteristics between the feeding and fasting phases and the time-of-day-specific configuration of microbiota functionality in the TRF regimen.