Remote Sensing (Jan 2022)

Assessment of Aquatic Reed Stands from Airborne Photogrammetric 3K Data

  • Simon Baier,
  • Nicolás Corti Meneses,
  • Juergen Geist,
  • Thomas Schneider

DOI
https://doi.org/10.3390/rs14020337
Journal volume & issue
Vol. 14, no. 2
p. 337

Abstract

Read online

Aquatic reed beds provide important ecological functions, yet their monitoring by remote sensing methods remains challenging. In this study, we propose an approach of assessing aquatic reed stand status indicators based on data from the airborne photogrammetric 3K-system of the German Aerospace Center (DLR). By a Structure from Motion (SfM) approach, we computed stand surface models of aquatic reeds for each of the 14 areas of interest (AOI) investigated at Lake Chiemsee in Bavaria, Germany. Based on reed heights, we subsequently calculated the reed area, surface structure homogeneity and shape of the frontline. For verification, we compared 3K aquatic reed heights against reed stem metrics obtained from ground-based infield data collected at each AOI. The root mean square error (RMSE) for 1358 reference points from the 3K digital surface model and the field-measured data ranged between 39 cm and 104 cm depending on the AOI. Considering strong object movements due to wind and waves, superimposed by water surface effects such as sun glint altering 3K data, the results of the aquatic reed surface reconstruction were promising. Combining the parameter height, area, density and frontline shape, we finally calculated an indicator for status determination: the aquatic reed status index (aRSI), which is based on metrics, and thus is repeatable and transferable in space and time. The findings of our study illustrate that, even under the adverse conditions given by the environment of the aquatic reed, aerial photogrammetry can deliver appropriate results for deriving objective and reconstructable parameters for aquatic reed status (Phragmites australis) assessment.

Keywords