Journal of Big Data (Nov 2023)
On hierarchical clustering-based approach for RDDBS design
Abstract
Abstract Distributed database system (DDBS) design is still an open challenge even after decades of research, especially in a dynamic network setting. Hence, to meet the demands of high-speed data gathering and for the management and preservation of huge systems, it is important to construct a distributed database for real-time data storage. Incidentally, some fragmentation schemes, such as horizontal, vertical, and hybrid, are widely used for DDBS design. At the same time, data allocation could not be done without first physically fragmenting the data because the fragmentation process is the foundation of the DDBS design. Extensive research have been conducted to develop effective solutions for DDBS design problems. But the great majority of them barely consider the RDDBS's initial design. Therefore, this work aims at proposing a clustering-based horizontal fragmentation and allocation technique to handle both the early and late stages of the DDBS design. To ensure that each operation flows into the next without any increase in complexity, fragmentation and allocation are done simultaneously. With this approach, the main goals are to minimize communication expenses, response time, and irrelevant data access. Most importantly, it has been observed that the proposed approach may effectively expand RDDBS performance by simultaneously fragmenting and assigning various relations. Through simulations and experiments on synthetic and real databases, we demonstrate the viability of our strategy and how it considerably lowers communication costs for typical access patterns at both the early and late stages of design.
Keywords