Parasites & Vectors (Aug 2023)

Topical, contact, and oral susceptibility of adult Culicoides biting midges (Diptera: Ceratopogonidae) to fluralaner

  • Blythe E. Lawson,
  • Emily G. McDermott

DOI
https://doi.org/10.1186/s13071-023-05899-7
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Culicoides biting midges (Diptera: Ceratopogonidae) are economically important blood-feeding pests closely associated with livestock production. They are the principal vectors of two hemorrhagic disease viruses affecting both wild and domestic ruminants within the US: bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). BTV impacts the US agriculture sector through direct commodity loss and strict international livestock trade restrictions. Yet, despite posing a considerable threat to US livestock, Culicoides are understudied, and management strategies are lacking. Current control tools for Culicoides are limited to synthetic chemicals, predominantly pyrethroids. With limited products available for livestock producers, proper pesticide rotation is difficult. The present study investigates the efficacy of fluralaner, an isoxazoline insecticide, beyond its current labeled use as an ectoparasiticide in anticipation of adding a new class of pesticides into rotation for use against biting midges. Methods The efficacy of fluralaner was evaluated by conducting contact, topical, and oral toxicity bioassays on adult female Culicoides sonorensis. Contact toxicity was assessed by using a modified WHO cone assay, which simulates exposure through landing on an insecticide-treated surface. A modified WHO topical toxicity assay, in which fluralaner dilutions were administered to the lateral thorax, was used to assess topical toxicity. For evaluation of oral toxicity, females were offered a blood meal spiked with fluralaner in an artificial membrane feeding system to simulate a systemic insecticide. Results Contact exposure of fluralaner did not cause extensive or consistent mortality. Even the highest concentration tested (100 mg/ml) resulted in an average of only 24.3% mortality at 24 h, and mortality did not significantly differ between exposed and control midges at any concentration. One hundred percent mortality was consistently achieved at concentrations of 1 mg/ml when fluralaner was applied topically. The LC50 for topical exposure to fluralaner at 24 h was estimated to be 0.011 mg/ml. Oral exposure to fluralaner through ingestion of a spiked blood meal proved to be the most effective exposure method, significantly increasing mortality in a dose-dependent manner at 1 h post-exposure. The LC50 at 24 h following ingestion was 14.42 ng/ml. Conclusion Our results suggest that fluralaner is a viable candidate for use as an insecticide against adult biting midges if exposed orally, such as in a systemic given to livestock. As withdrawal period requirements for meat animals present unique yet definitive challenges, pharmacokinetic studies of isoxazoline drugs need to be pursued and finalized for livestock before fluralaner may be used as a management strategy in this manner. Alternatively, livestock not raised for consumption, such as hair sheep, would directly benefit from administering oral fluralaner as a component of a BTV disease management program. Graphical abstract

Keywords