BMC Medical Research Methodology (Dec 2017)
Sample size calculations based on a difference in medians for positively skewed outcomes in health care studies
Abstract
Abstract Background In healthcare research, outcomes with skewed probability distributions are common. Sample size calculations for such outcomes are typically based on estimates on a transformed scale (e.g. log) which may sometimes be difficult to obtain. In contrast, estimates of median and variance on the untransformed scale are generally easier to pre-specify. The aim of this paper is to describe how to calculate a sample size for a two group comparison of interest based on median and untransformed variance estimates for log-normal outcome data. Methods A log-normal distribution for outcome data is assumed and a sample size calculation approach for a two-sample t-test that compares log-transformed outcome data is demonstrated where the change of interest is specified as difference in median values on the untransformed scale. A simulation study is used to compare the method with a non-parametric alternative (Mann-Whitney U test) in a variety of scenarios and the method is applied to a real example in neurosurgery. Results The method attained a nominal power value in simulation studies and was favourable in comparison to a Mann-Whitney U test and a two-sample t-test of untransformed outcomes. In addition, the method can be adjusted and used in some situations where the outcome distribution is not strictly log-normal. Conclusions We recommend the use of this sample size calculation approach for outcome data that are expected to be positively skewed and where a two group comparison on a log-transformed scale is planned. An advantage of this method over usual calculations based on estimates on the log-transformed scale is that it allows clinical efficacy to be specified as a difference in medians and requires a variance estimate on the untransformed scale. Such estimates are often easier to obtain and more interpretable than those for log-transformed outcomes.
Keywords