Molecular Therapy: Methods & Clinical Development (Jun 2022)
An etanercept O-glycovariant with enhanced potency
Abstract
Most therapeutic proteins are glycosylated with N-glycans and/or O-glycans. N-glycans on therapeutic proteins have been extensively studied for their control strategy and impact on drug product quality. However, knowledge of O-glycosylation in therapeutic protein production and its impact on product quality remains elusive. To address this gap, we generated an O-glycoengineered Chinese Hamster Ovary (CHO) cell line platform to modulate O-glycosylation of therapeutic proteins and investigated the impact of O-glycans on the physicochemical and biological properties of etanercept. Our results demonstrate that this CHO cell line platform produces controlled O-glycosylation profiles containing either truncated O-glycans (sialylTn and/or Tn), or sialylCore 3 alone, or sialylCore 1 with sialylTn or sialylCore 3 O-glycans on endogenous and recombinant proteins. Moreover, the platform demonstrated exclusive modulation of O-glycosylation without affecting N-glycosylation. Importantly, certain O-glycans on etanercept enhanced tumor necrosis factor-α binding affinity and consequent potency. This is the first report that describes the systematic establishment of an O-glycoengineered CHO cell line platform with direct evidence that supports the applicability of the platform in the production of engineered proteins with desired O-glycans. This platform is valuable for identifying O-glycosylation as a critical quality attribute of biotherapeutics using the quality by design principle.