Ecotoxicology and Environmental Safety (Dec 2021)
The Keap1/Nrf2-ARE signaling pathway is involved in atrazine induced dopaminergic neurons degeneration via microglia activation
Abstract
Objective: To investigate the mechanisms of ATR-induced dopaminergic toxicity by microglia activation and the response of the Keap1/ Nrf2- ARE signaling pathway. Methods: Wistar rats were treated with 50, 100 and 200 mg/kg ATR and BV-2 microglia cells were treated with 50, 100 μM ATR or 100 ng/mL LPS, respectively. Rats behavioral responses and histopathological changes were monitored. Immunohistochemical and immunofluorescence analysis detected Iba-1 and TH+ cells in rats. Keap1/Nrf2-ARE signaling-related proteins and inflammatory factors from BV-2 cells and rats were detected using ELISA, Western blot and Real-time PCR. Results: After ATR treatment, the grip strength of Wistar rats was significantly decreased, and anxiety were clearly observed. TH+ neurons were reduced, however, the number of microglia cells and Iba-1 levels were increased clearly in SN. The release of ROS, TNF-α and IL-Iβ were increased, and levels of SOD and GSH-Px were significantly decreased. Keap1 mRNA expression and protein levels were decreased, while nuclear Nrf2 mRNA expression and protein levels were both increased in vivo and in vitro. Conclusion: ATR could significantly activate microglia and exacerbate neurotoxicity and neuroinflammation, leading to accelerate dopaminergic neuron cell death by inhibiting Keap1/Nrf2-ARE signaling pathway.