IJCCS (Indonesian Journal of Computing and Cybernetics Systems) (Jul 2024)

Object Detection Based on You Look Only Once Version 8 for Real-Time Applications

  • Gede Agus Santiago,
  • Putu Sugiartawan,
  • Ni Nengah Dita Ardriani

DOI
https://doi.org/10.22146/ijccs.94843
Journal volume & issue
Vol. 18, no. 3

Abstract

Read online

This research focus to involves human detection in crowded situations, especially in the lecturer's room. The lecturer's room is very vulnerable because it can be accessed by anyone with only one entry and exit to the lecturer's room, so it would be perfect to place this Yolo camera in front of the lecturer's room so that incoming and outgoing activities can be monitored during work days on campus. The main challenge is how the system can distinguish individuals in dense crowds and identify their relative locations to each other. In this context, it is necessary to find a solution that can overcome the uncertainty of recognizing individuals in a group and accurately understand the location and distance between them. One proposed solution is to use the YOLO algorithm on video recordings to detect human objects in the lecturer's room during working hours. This research introduces the YOLOv8 model, a real-time detection system with high speed and accuracy in detecting and classifying objects in video recordings. YOLOv8 can accurately detect object movement, making it an efficient real-time framework for dealing with complex objects. This research experiment involved using eight different smartphone devices to collect datasets. Using various smartphone devices aims to test object detection performance under various shooting conditions, including variations in image quality, lighting, shooting angle, and camera resolution. The research results show that using multiple smartphone devices in dataset collection can improve the robustness and accuracy of object detection models. By integrating datasets from various sources and shooting conditions, the YOLOv8 model was successfully trained to better recognize objects in different situations, even in campus environments that often have challenges such as weather variations and lighting fluctuations. The test results show an accuracy rate of 93.33% in human object detection

Keywords