PLoS ONE (Jan 2021)

Composition and content of phenolic acids and flavonoids among the different varieties, development stages, and tissues of Chinese Jujube (Ziziphus jujuba Mill.).

  • Xiaofang Xue,
  • Ailing Zhao,
  • Yongkang Wang,
  • Haiyan Ren,
  • Junjie Du,
  • Dengke Li,
  • Yi Li

DOI
https://doi.org/10.1371/journal.pone.0254058
Journal volume & issue
Vol. 16, no. 10
p. e0254058

Abstract

Read online

The composition and content of phenolic acids and flavonoids among the different varieties, development stages, and tissues of Chinese jujube (Ziziphus jujuba Mill.) were systematically examined using ultra-high-performance liquid chromatography to provide a reference for the evaluation and selection of high-value resources. Five key results were identified: (1) Overall, 13 different phenolic acids and flavonoids were detected from among the 20 excellent jujube varieties tested, of which 12 were from the fruits, 11 from the leaves, and 10 from the stems. Seven phenolic acids and flavonoids, including (+)-catechin, rutin, quercetin, luteolin, spinosin, gallic acid, and chlorogenic acid, were detected in all tissues. (2) The total and individual phenolic acids and flavonoids contents significantly decreased during fruit development in Ziziphus jujuba cv.Hupingzao. (3) The total phenolic acids and flavonoids content was the highest in the leaves of Ziziphus jujuba cv.Hupingzao, followed by the stems and fruits with significant differences among the content of these tissues. The main composition of the tissues also differed, with quercetin and rutin present in the leaves; (+)-catechin and rutin in the stems; and (+)-catechin, epicatechin, and rutin in the fruits. (4) The total content of phenolic acid and flavonoid ranged from 359.38 to 1041.33 μg/g FW across all examined varieties, with Ziziphus jujuba cv.Jishanbanzao having the highest content, and (+)-catechin as the main composition in all 20 varieties, followed by epicatechin, rutin, and quercetin. (5) Principal component analysis showed that (+)-catechin, epicatechin, gallic acid, and rutin contributed to the first two principal components for each variety. Together, these findings will assist with varietal selection when developing phenolic acids and f lavonoids functional products.