Sensitive Spectroscopy of Acetone Using a Widely Tunable External-Cavity Quantum Cascade Laser
Faisal Nadeem,
Julien Mandon,
Amir Khodabakhsh,
Simona M. Cristescu,
Frans J. M. Harren
Affiliations
Faisal Nadeem
Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Julien Mandon
Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Amir Khodabakhsh
Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Simona M. Cristescu
Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Frans J. M. Harren
Trace Gas Research Facility, Molecular, and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
We employed a single-mode, widely tunable (~300 cm−1) external-cavity quantum cascade laser operating around 8 µm for broadband direct absorption spectroscopy and wavelength modulation spectroscopy where a modulation frequency of 50 kHz was employed with high modulation amplitudes of up to 10 GHz. Using a compact multipass cell, we measured the entire molecular absorption band of acetone at ~7.4 µm with a spectral resolution of ~1 cm−1. In addition, to demonstrate the high modulation dynamic range of the laser, we performed direct absorption (DAS) and second harmonic wavelength modulation spectroscopy (WMS-2f) of the Q-branch peak of acetone molecular absorption band (HWHM ~10 GHz) near 1365 cm−1. With WMS-2f, a minimum detection limit of 15 ppbv in less than 10 s is achieved, which yields a noise equivalent absorption sensitivity of 1.9 × 10−8 cm−1 Hz−1/2.