ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Aug 2014)
An automatic and modular stereo pipeline for pushbroom images
Abstract
The increasing availability of high resolution stereo images from Earth observation satellites has boosted the development of tools for producing 3D elevation models. The objective of these tools is to produce digital elevation models of very large areas with minimal human intervention. The development of these tools has been shaped by the constraints of the remote sensing acquisition, for example, using ad hoc stereo matching tools to deal with the pushbroom image geometry. However, this specialization has also created a gap with respect to the fields of computer vision and image processing, where these constraints are usually factored out. In this work we propose a fully automatic and modular stereo pipeline to produce digital elevation models from satellite images. The aim of this new pipeline, called Satellite Stereo Pipeline and abbreviated as s2p, is to use (and test) off-the-shelf computer vision tools while abstracting from the complexity associated to satellite imaging. To this aim, images are cut in small tiles for which we proved that the pushbroom geometry is very accurately approximated by the pinhole model. These tiles are then processed with standard stereo image rectification and stereo matching tools. The specifics of satellite imaging such as pointing accuracy refinement, estimation of the initial elevation from SRTM data, and geodetic coordinate systems are handled transparently by s2p. We demonstrate the robustness of our approach on a large database of satellite images and by providing an online demo of s2p.