Scientific Reports (Jun 2022)

Genome-wide identification and characterization of long noncoding RNAs during peach (Prunus persica) fruit development and ripening

  • Hui Zhou,
  • Fei Ren,
  • Xiao Wang,
  • Keli Qiu,
  • Yu Sheng,
  • Qingmei Xie,
  • Pei Shi,
  • Jinyun Zhang,
  • Haifa Pan

DOI
https://doi.org/10.1038/s41598-022-15330-3
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 15

Abstract

Read online

Abstract LncRNAs represent a class of RNA transcripts of more than 200 nucleotides (nt) in length without discernible protein-coding potential. The expression levels of lncRNAs are significantly affected by stress or developmental cues. Recent studies have shown that lncRNAs participate in fruit development and ripening processes in tomato and strawberry; however, in other fleshy fruits, the association between lncRNAs and fruit ripening remains largely elusive. Here, we constructed 9 ssRNA-Seq libraries from three different peach (Prunus persica) fruit developmental stages comprising the first and second exponential stages and the fruit-ripening stage. In total, 1500 confident lncRNAs from 887 loci were obtained according to the bioinformatics analysis. The lncRNAs identified in peach fruits showed distinct characteristics compared with protein-coding mRNAs, including lower expression levels, lower complexity of alternative splicing, shorter isoforms and smaller numbers of exons. Expression analysis identified 575 differentially expressed lncRNAs (DELs) classified into 6 clusters, among which members of Clusters 1, 2, 4 and 5 were putatively associated with fruit development and ripening processes. Quantitative real-time PCR revealed that the DELs indeed had stage-specific expression patterns in peach fruits. GO and KEGG enrichment analysis revealed that DELs might be associated with fruit-ripening-related physiological and metabolic changes, such as flavonoid biosynthesis, fruit texture softening, chlorophyll breakdown and aroma compound accumulation. Finally, the similarity analysis of lncRNAs within different plant species indicated the low sequence conservation of lncRNAs. Our study reports a large number of fruit-expressed lncRNAs and identifies fruit development phase-specific expressed lncRNA members, which highlights their potential functions in fruit development and ripening processes and lays the foundations for future functional research.