Nanomaterials (Feb 2020)

Enhanced Magnetic Behavior of Cobalt Nano-Rods Elaborated by the Polyol Process Assisted with an External Magnetic Field

  • Mohamed Ali Bousnina,
  • Amel Dakhlaoui-Omrani,
  • Frédéric Schoenstein,
  • Yaghoub Soumare,
  • Aliou Hamady Barry,
  • Jean-Yves Piquemal,
  • Guillaume Viau,
  • Silvana Mercone,
  • Noureddine Jouini

DOI
https://doi.org/10.3390/nano10020334
Journal volume & issue
Vol. 10, no. 2
p. 334

Abstract

Read online

Cobalt nano-rods with the hexagonal close-packed (hcp) structure were prepared by reduction of the long-chain carboxylate Co (II) precursor in polyol. The application of an external magnetic field (µ0H = 1.25 T) during the nucleation and growth steps resulted in a noticeable modification of the mean aspect ratio (length/diameter) of the particles. The particle morphology was also modified as the nano-rods did not exhibit conical heads at their extremities anymore, which are observed for particles prepared without application of an external magnetic field. Besides, the stacking faults density along the c axis of the hcp structure in the cobalt nano-rods has been found to decrease with the increase in the applied magnetic field. The coercive field of randomly oriented nano-rods increased with the aspect ratio, showing the highest value (i.e., 5.8 kOe at 300 K) for the cobalt nano-rods obtained under the highest applied magnetic field. For partially oriented Co nano-rods in toluene solution, the magnetic properties were significantly enhanced with a coercive field of 7.2 kOe at 140 K, while the magnetization saturation reached 92% of the bulk. The MR/MS value was about 0.8, indicating a good orientation of the anisotropic particles relative to each other, making them suitable for the preparation of permanent magnets via a bottom-up approach.

Keywords