Malaria Journal (Jul 2018)

Immunological characterization of Plasmodium vivax Pv32, a novel predicted GPI-anchored merozoite surface protein

  • Yang Cheng,
  • Bo Wang,
  • Feng Lu,
  • Jin-Hee Han,
  • Md Atique Ahmed,
  • Eun-Taek Han

DOI
https://doi.org/10.1186/s12936-018-2401-7
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background The development of an effective malarial vaccine is an urgent need. Most glycosylphosphatidylinositol (GPI)-anchored proteins of Plasmodium parasites are exposed to neutralizing antibodies, and several are advanced vaccine candidates. In the present study, Plasmodium vivax Pv32 (PVX_084815) as a hypothetical, predicted GPI-anchored and cysteine-rich motif was identified from our previous findings with a focus on its antigenic profiling. The orthologue gene pv32, a predicted GPI anchor of P. falciparum PF3D7_1434400, has still not been well studied. Methods The gene information of pv32 was obtained from PlasmoDB. Recombinant Pv32 protein was expressed and purified using a wheat germ cell-free expression system and a glutathione-Sepharose column. Naturally acquired immune response to recombinant Pv32 protein was evaluated using a protein microarray with 96 parasite-infected patients and 96 healthy individuals. Antibodies against recombinant Pv32 proteins from immune animals were produced, used and analyzed for the subcellular localization of native Pv32 protein by an immunofluorescence assay. A total of 48 pv32 sequences from 11 countries retrieved from PlasmoDB were used to determine the genetic diversity, polymorphisms and genealogical relationships with DNAsp and NETWORK software packages. Results Pv32 is encoded by a conserved gene with two introns that are located on chromosome 13 and expressed as a 32 kDa protein in mature asexual stage parasites. Immunofluorescence data showed that Pv32 localized on the merozoite surface in schizont-stage parasites. The recombinant Pv32 was recognized by 39.6% of antibodies from P. vivax-infected individuals compared with healthy individuals. Low levels of nucleotide diversity (π = 0.0028) and polymorphisms of pv32 were detected within worldwide isolates. Conclusions This study shows the identification and characterization of the hypothetical protein, Pv32. Pv32 provides important characteristics, including a merozoite surface protein, a predicted GPI motif and Cysteine-rich motif among Plasmodium species. These results suggested that Pv32 is immunogenic with a merozoite surface pattern to antibodies during natural infection in humans.

Keywords