Biomedicine & Pharmacotherapy (Feb 2023)

The in vitro and in vivo anticancer activities of Antrodia salmonea through inhibition of metastasis and induction of ROS-mediated apoptotic and autophagic cell death in human glioblastoma cells

  • Yi-Pin Lin,
  • You-Cheng Hseu,
  • Varadharajan Thiyagarajan,
  • Chithravel Vadivalagan,
  • Sudhir Pandey,
  • Kai-Yuan Lin,
  • Yuan-Tai Hsu,
  • Jiunn-Wang Liao,
  • Chuan-Chen Lee,
  • Hsin-Ling Yang

Journal volume & issue
Vol. 158
p. 114178

Abstract

Read online

Background:: Antrodia salmonea (AS) exhibits anticancer activities against various cancers. Objective: This study investigated the anticancer activities of AS on human glioblastoma (GBM8401 and U87MG) cells both in vitro and in vivo and explained the underlying molecular mechanism. Methods: MTT, colony formation, migration/invasion assay, immunoblotting, immunofluorescence, TUNEL, Annexin V/PI staining, AO staining, GFP-LC3 transfection, TEM, qPCR, siLC3, DCFH2-DA assay, and xenografted-nude mice were used to assess the potential of AS therapy. Results: AS treatment retarded growth and suppressed colony formation in glioblastoma cells. AS attenuates EMT by suppressing invasion and migration, increasing E-cadherin expression, decreasing Twist, Snail, and N-cadherin expression, and inhibiting Wnt/β-catenin pathways in GBM8401 and U87MG cells. Furthermore, AS induced apoptosis by activating caspase-3, cleaving PARP, and dysregulating Bax and Bcl-2 in both cell lines. TUNEL assay and Annexin V/PI staining indicated AS-mediated late apoptosis. Interestingly, AS induced autophagic cell death by LC3-II accumulation, AVO formation, autophagosome GFP-LC3 puncta, p62/SQSTM1 expression, and ATG4B inhibition in GBM8401 and U87MG cells. TEM data revealed that AS favored autophagosome and autolysosome formation. The autophagy inhibitors 3-MA/CQ and LC3 knockdown suppressed AS-induced apoptosis in glioblastoma cells, indicating that the inhibition of autophagy decreased AS-induced apoptosis. Notably, the antioxidant N-acetylcysteine (NAC) inhibited AS-mediated ROS production and AS-induced apoptotic and autophagic cell death. Furthermore, AS induced ROS-mediated inhibition of the PI3K/AKT/mTOR signaling pathway. AS reduced the tumor burden in GBM8401-xenografted nude mice and significantly modulated tumor xenografts by inducing anti-EMT, apoptosis, and autophagy. AS could be a potential antitumor agent in human glioblastoma treatment.

Keywords