Molecules (Nov 2023)

Excellent Dark/Light Dual-Mode Photoresponsive Activities Based on g-C<sub>3</sub>N<sub>4</sub>/CMCh/PVA Nanocomposite Hydrogel Using Electron Beam Radiation Method

  • Jin-Yu Yang,
  • Dong-Xu Tang,
  • Dong-Liang Liu,
  • Kun Liu,
  • Xiao-Jie Yang,
  • Yue-Sheng Li,
  • Yi Liu

DOI
https://doi.org/10.3390/molecules28227544
Journal volume & issue
Vol. 28, no. 22
p. 7544

Abstract

Read online

Photocatalytic technology for inactivating bacteria in water has received much attention. In this study, we reported a dark–light dual-mode sterilized g-C3N4/chitosan/poly (vinyl alcohol) hydrogel (g-CP) prepared through freeze–thaw cycling and an in situ electron-beam radiation method. The structures and morphologies of g-CP were confirmed using Fourier infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), solid ultraviolet diffuse reflectance spectroscopy (UV-vis DRS), and Brunauer–Emmett–Teller (BET). Photocatalytic degradation experiments demonstrated that 1 wt% g-CP degraded rhodamine B (RhB) up to 65.92% in 60 min. At the same time, g-CP had good antimicrobial abilities for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 4 h. The shapes of g-CP were adjustable (such as bar, cylinder, and cube) and had good mechanical properties and biocompatibility. The tensile and compressive modulus of 2 wt% g-CP were 0.093 MPa and 1.61 MPa, respectively. The Cell Counting Kit-8 (CCK-8) test and Hoechst33342/PI double staining were used to prove that g-CP had good biocompatibility. It is expected to be applied to environmental sewage treatment and wound dressing in the future.

Keywords