Journal of Functional Biomaterials (May 2025)
The Influence of Ca on Mechanical Properties of the Mg–Ca–Zn–RE–Zr Alloy for Orthopedic Applications
Abstract
Background: This study examined how the concentration of calcium (Ca) influences the microstructure, mechanical characteristics, and tribological attributes of Mg–Ca–Zn–RE–Zr alloys for orthopedic medicine. Materials and methods: Experimental alloys with 0.1 and 0.5 wt% Ca were prepared in a controlled atmosphere induction furnace. The microstructure of the alloys was investigated by scanning electron microscopy, the chemical composition by X-ray fluorescence and energy-dispersive spectroscopy, the mechanical properties by indentation and scratching, and the corrosion resistance by linear and cyclic potentiometry. Results: The alloy with 0.1% Ca exhibited greater fluctuations in the coefficient of friction, while the sample with 0.5% Ca showed a higher susceptibility to cracking. Regarding corrosion resistance, both samples exhibited a generalized corrosion trend with similar corrosion currents. At lower Ca concentrations (0.1%), the refined microstructure of the alloys provided an elastic modulus closer to that of human bone, minimizing the risk of excessive local stress and promoting uniform load distribution at the bone-implant interface. Conclusion: The 0.5% Ca alloy offered superior tribological stability and better shock absorption, making it suitable for applications requiring long-term stability. The study highlighted the potential of both compositions based on the specific requirements of biodegradable orthopedic implants.
Keywords