Plants (Nov 2024)
Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023
Abstract
The apoplastic barriers, composed of Casparian strip (CS) and suberin lamellae (SL), are integral to the regulation of water and plant nutrient uptake in plants, as well as their resilience to abiotic stresses. This study systematically examines the research developments and emerging trends in this field from 2003 to 2023, utilizing bibliometric tools such as Web of Science, CiteSpace, and VOSviewer to analyze a dataset of 642 publications. This paper reviews the cooperation of different countries, institutions, and scholars in apoplastic barriers research based on cooperative network analysis. In the field, China has the highest number of publications, the University of Bolton has the highest number of publications, and Niko Geldner is the author with the maximum number of publications. Notably, 27 publications were identified as highly cited, with their research primarily focusing on (1) genes, proteins, enzymes, and hormones regulating the formation of apoplastic barriers; (2) the influence of adversity stress on apoplastic barriers; (3) the chemical components of apoplastic barriers; (4) the evaluations of research progress on apoplastic barriers. Combined with the keyword co-occurrence network diagram, it is proposed that future research directions in this field should be as follows: (1) physiological functions of apoplastic barriers in plant root; (2) differences in the formation of apoplastic barriers with different root systems; (3) methods to promote apoplastic barriers formation; and (4) application of molecular biology techniques. The present study provides a further understanding of the trends in apoplastic barriers, and the data analyzed can be used as a guide for future research directions.
Keywords