Revista Brasileira de Meteorologia (Feb 2022)

Turbulência de Ar Claro no Sudeste do Brasil: Estudo de Casos

  • Francisco Pinheiro Gomes,
  • Gutemberg Borges Franca,
  • Antonio Vicente Pereira Neto

DOI
https://doi.org/10.1590/0102-7786360036

Abstract

Read online

Resumo Analisa-se a aplicabilidade dos índices clássicos, numericamente modelados, indicadores de condições atmosféricas turbulenta para previsão de turbulência de céu claro (CAT) na região sul do Brasil. Os eventos foram reconstruídos usando 25.465 mensagens de CAT, denominado de AIREP (Air-Report), de 2015 a 2019, e 12.959 observações in-situ da aceleração vertical da gravidade (VRTG) registrados pelas aeronaves de fevereiro de 2018 a dezembro de 2019. Os registros de CAT via VRTG mostraram que os eventos turbulentos são proporcionalmente distribuídos (em parênteses a sua severidade) em 94% (leve), 4% (moderada) e 1% (severa) na região de estudo. As análises sinóticas de 5 estudos de casos revelam que os eventos de CAT ocorreram durante condições de céu claro na presença da corrente de jato e, assim, o cisalhamento de vento foi o mecanismo de sua formação. Três análises, baseada na composição de variáveis modelados pelos modelos GFS0,25 e WRF (com grade de 18, 6 e 2 km), definido como, (1) perfil de vento, temperatura potencial (θ), energia cinética turbulenta (TKE), (2) número de Richardson (Ri) e velocidade vertical (W), e (3) os índices indicadores de CAT denominados de Ri, Brown, Ellrod-Endlich, Ellrod-Knap and Ellroad-Knox, mostraram que quanto maior a resolução espacial da simulação numérica melhor é previsão de CAT. Análises da resposta dos índices modelados versus capacidade destes em representar as condições de uma atmosfera turbulenta, na circunvizinhança dos registros de VRTG, é calculada e se observou que o índice Brown foi o mais eficiente para tal, uma que este foi capaz de identificar 100% dos cinco casos estudados. O resultado de tentativa inicial para ajustar os índices (Brown, Ellrod-Endlich e Ellrod-Knap) de previsão de CAT, usando dados modelados do WRF são bastante promissores, visto que os três índices ajustados foram capazes de detectar, respectivamente, 96%, 96% e 99% da previsão de eventos de CAT, com 12 horas de antecedência nos dias 21 de maio de 2018 e 27 de março de 2019.

Keywords