Nuclear Energy and Technology (Sep 2021)

Use of the chemical Fricke dosimeter and its modifications for dosimetry of gamma neutron radiation of a pulsed reactor

  • Vladimir I. Potetnya,
  • Ekaterina V. Koryakina,
  • Marina V. Troshina,
  • Sergey N. Koryakin

DOI
https://doi.org/10.3897/nucet.7.74149
Journal volume & issue
Vol. 7, no. 3
pp. 231 – 237

Abstract

Read online Read online Read online

The paper investigates the characteristics of the chemical Fricke dosimeter (with the standard composition (D1), without NaCl addition to the solution (D2), without NaCl but with a tenfold increased concentration of Fe2+ (D3)) under continuous and pulsed irradiation with an ultra-high dose rate of the BARS-6 reactor with unshielded metallic cores. The dosimeter radiosensitivity had a linear dependence on the gamma neutron radiation dose in a range of 25 to 750 Gy and was respectively 1.96 ± 0.05 μGy–1 (D1), 2.04 ± 0.05 μGy–1 (D2), and 2.08 ± 0.5 μGy–1 (D3) in the continuous irradiation mode, and 1.24 ± 0.05 μGy–1, 2.00 ± 0.05 μGy–1, and 1.94 ± 0.05 μGy–1 in the pulsed irradiation mode. This makes ≈ 60% of their sensitivity to the 60Со gamma radiation (3.40 ± 0.02 μGy–1), and 36%, 1.6 times as less, for a standard Fricke dosimeter irradiated in the pulsed mode. The experimental value of the radiation chemical yield, Gn(Fe3+), for all solution modifications and both irradiation modes varied slightly and was 0.84 ± 0.11 μM/J on the average, except for the standard solution in the pulsed mode (0.66 ± 0.07 μM/J). The neutron doses determined by chemical and activation dosimeters coincided within the error limits, but the chemical dosimeter readings were systematically higher, by about 20%. Therefore, in the fission spectrum neutron dose rate range of 0.4 to 7×108 Gy/min, there is no dose rate effect both in the standard Fricke dosimeter version (without NaCl) and in the modified version, which makes it possible to use modified Fricke dosimeters to assess the physical and dosimetry characteristics of mixed gamma neutron radiation beams.

Keywords