Translational Oncology (Jun 2017)

Magnetic Resonance Imaging (MRI) of Intratumoral Voxel Heterogeneity as a Potential Response Biomarker: Assessment in a HER2+ Esophageal Adenocarcinoma Xenograft Following Trastuzumab and/or Cisplatin Therapy

  • Connie Yip,
  • Amanda Weeks,
  • Karen Shaw,
  • Musib Siddique,
  • Fuju Chang,
  • David B. Landau,
  • Gary JR. Cook,
  • Vicky Goh

Journal volume & issue
Vol. 10, no. 3
pp. 459 – 467

Abstract

Read online

We evaluated magnetic resonance imaging (MRI) voxel heterogeneity following trastuzumab and/or cisplatin in a HER2+ esophageal xenograft (OE19) as a potential response biomarker. OE19 xenografts treated with saline (controls), monotherapy, or combined cisplatin and trastuzumab underwent 9.4-T MRI. Tumor MRI parametric maps of T1 relaxation time (pre/post contrast), T2 relaxation time, T2* relaxation rate (R2*), and apparent diffusion coefficient obtained before (TIME0), after 24 hours (TIME1), and after 2 weeks of treatment (TIME2) were analyzed. Voxel histogram and fractal parameters (from the whole tumor, rim and center, and as a ratio of rim‐to‐center) were derived. Tumors were stained for immunohistochemical markers of hypoxia (CA-IX), angiogenesis (CD34), and proliferation (Ki-67). Combination therapy reduced xenograft growth rate (relative change, ∆ +0.58 ± 0.43 versus controls, ∆ +4.1 ± 1.0; P = 0.008). More spatially homogeneous voxel distribution between the rim to center was noted after treatment for combination therapy versus controls, respectively, for contrast-enhanced T1 relaxation time (90th percentile: ratio 1.00 versus 0.88, P = 0.009), T2 relaxation time (mean: 1.00 versus 0.92, P = 0.006; median: 0.98 versus 0.91, P = 0.006; 75th percentile: 1.02 versus 0.94, P = 0.007), and R2* (10th percentile: 0.99 versus 1.26, P = 0.003). We found that combination and trastuzumab monotherapy reduced MRI spatial heterogeneity and growth rate compared to the control or cisplatin groups, the former providing adjunctive tumor response information.