Electrochemical Noise Response of Cr<sub>2</sub>Nb Powders Applying Mechanical Alloying
Claudia Georgina Nava-Dino,
Juan Pablo Flores-De los Ríos,
Maria Cristina Maldonado-Orozco,
Mario Sánchez-Carrillo,
Raul German Bautista-Margulis,
Anabel De la Cruz Delgado,
Facundo Almeraya-Calderón
Affiliations
Claudia Georgina Nava-Dino
Facultad de Ingeniería, Universidad Autónoma de Chihuahua, Circuito No 1., Campus Universitario II, Chihuahua 31125, Mexico
Juan Pablo Flores-De los Ríos
Facultad de Ingeniería, Universidad Autónoma de Chihuahua, Circuito No 1., Campus Universitario II, Chihuahua 31125, Mexico
Maria Cristina Maldonado-Orozco
Facultad de Ingeniería, Universidad Autónoma de Chihuahua, Circuito No 1., Campus Universitario II, Chihuahua 31125, Mexico
Mario Sánchez-Carrillo
Tecnológico Nacional de México-Instituto Tecnológico de Chihuahua, Av. Tecnológico 2909, Chihuahua 31130, Mexico
Raul German Bautista-Margulis
División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa 86040, Mexico
Anabel De la Cruz Delgado
Centro de Investigaciónen Materiales Avanzados S.C (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
Facundo Almeraya-Calderón
Centro de Investigación e Innovaciónen Ingeniería Aeronáutica, Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
Cr2Nb alloys are potential candidates for high-temperature structural materials. The influence of different mechanical alloying parameters (milling time) and sintering processes were studied. After mechanical alloying and observation by scanning electron microscope (SEM), nano powders were characterized and then sintered by spark plasma sintering (SPS). Electrochemical noise (EN) tests were also conducted in order to study the electrochemical behavior. From the current experimental results, it was revealed that ball milling times up to 20 h may explain the influence of Nb–Cr alloys and its association to the Laves phase and corrosion behavior. These insights aimed at improving the samples’ predicted behavior before spending time and resources at high-temperature industrial processes.