PeerJ Physical Chemistry (Sep 2022)

Using genetic programming to predict and optimize protein function

  • Iliya Miralavy,
  • Alexander R. Bricco,
  • Assaf A. Gilad,
  • Wolfgang Banzhaf

DOI
https://doi.org/10.7717/peerj-pchem.24
Journal volume & issue
Vol. 4
p. e24

Abstract

Read online Read online

Protein engineers conventionally use tools such as Directed Evolution to find new proteins with better functionalities and traits. More recently, computational techniques and especially machine learning approaches have been recruited to assist Directed Evolution, showing promising results. In this article, we propose POET, a computational Genetic Programming tool based on evolutionary computation methods to enhance screening and mutagenesis in Directed Evolution and help protein engineers to find proteins that have better functionality. As a proof-of-concept, we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer contrast mechanism. The evolutionary methods used in POET are described, and the performance of POET in different epochs of our experiments with Chemical Exchange Saturation Transfer contrast are studied. Our results indicate that a computational modeling tool like POET can help to find peptides with 400% better functionality than used before.

Keywords