MATEC Web of Conferences (Jan 2017)
The Effect of Si/Al on Mechanical Properties and Fracture Behavior of Stainless Steel Mesh/Crp Reinforced Geopolymer Composites
Abstract
In this study, a series stainless steel mesh/Crp reinforced geopolymer composites with different Si/Al molar ratio (N) were designed and prepared, where N = 1.75, 2 and 2.25, respectively. The effect of Si/Al molar ratio in the geopolymer matrix on mechanical properties and fracture behavior of the geopolymer composites were investigated. The microstructure of geopolymer became more compact when Si/Al increased from 1.75 to 2, which was beneficial to the improvement of geopolymer’s mechanical properties. And continuing to rise to 2.25 for Si/Al, the completely curing of geopolymer composites required more time compared with lower Si/Al, which can be attributed to the different microstructure and chemical composition caused by the different Si/Al. The optimum Si/Al molar ratio was about 2 at which the composites samples present the best mechanical properties with the flexure strength of 115.3 MPa and elastic modulus of 11.0 GPa, respectively. The results of fracture behavior suggested that geopolymer composites with N is 2.25 displayed the behavior characteristics of metal materials, which can be attributed to a poor integrated condition in interface between reinforcements and geopolymer matrix.