Polymers (Aug 2016)

Surface Immobilization of pH-Responsive Polymer Brushes on Mesoporous Silica Nanoparticles by Enzyme Mimetic Catalytic ATRP for Controlled Cargo Release

  • Hang Zhou,
  • Xin Wang,
  • Jun Tang,
  • Ying-Wei Yang

DOI
https://doi.org/10.3390/polym8080277
Journal volume & issue
Vol. 8, no. 8
p. 277

Abstract

Read online

Peroxidase mimetic catalytic atom transfer radical polymerization (ATRP) was first used to install tertiary amine-functionalized polymer brushes on the surface of mesoporous silica nanoparticles (MSNs) in a facile and highly efficient manner. Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brushes-grafted MSNs were fabricated by biocompatible deuterohemin-β-Ala-His-Thr-Val-Glu-Lys (DhHP-6)-catalyzed surface-initiated ATRP (SI-ATRP). The resulting organic–inorganic hybrid nanocarriers were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), SEM, TEM, Elemental analysis, Zeta-potential, and N2 adsorption–desorption isotherms, which demonstrated the successful coating of pH-responsive polymers on the MSN surface. Rhodamine 6G (Rh6G) dyes were further loaded within the mesopores of this nanocarrier, and the release of Rh6G out of MSNs in a controlled fashion was achieved upon lowing the solution pH. The electrostatic repulsion of positively-charged tertiary ammonium of PDMAEMAs in acidic environments induced the stretching out of polymer brushes on MSN surfaces, thus opening the gates to allow cargo diffusion out of the mesopores of MSNs.

Keywords