Sensors (Jun 2024)

A Novel 3D Reconstruction Sensor Using a Diving Lamp and a Camera for Underwater Cave Exploration

  • Quentin Massone,
  • Sébastien Druon,
  • Jean Triboulet

DOI
https://doi.org/10.3390/s24124024
Journal volume & issue
Vol. 24, no. 12
p. 4024

Abstract

Read online

Aquifer karstic structures, due to their complex nature, present significant challenges in accurately mapping their intricate features. Traditional methods often rely on invasive techniques or sophisticated equipment, limiting accessibility and feasibility. In this paper, a new approach is proposed for a non-invasive, low-cost 3D reconstruction using a camera that observes the light projection of a simple diving lamp. The method capitalizes on the principles of structured light, leveraging the projection of light contours onto the karstic surfaces. By capturing the resultant light patterns with a camera, three-dimensional representations of the structures are reconstructed. The simplicity and portability of the equipment required make this method highly versatile, enabling deployment in diverse underwater environments. This approach is validated through extensive field experiments conducted in various aquifer karstic settings. The results demonstrate the efficacy of this method in accurately delineating intricate karstic features with remarkable detail and resolution. Furthermore, the non-destructive nature of this technique minimizes disturbance to delicate aquatic ecosystems while providing valuable insights into the subterranean landscape. This innovative methodology not only offers a cost-effective and non-invasive means of mapping aquifer karstic structures but also opens avenues for comprehensive environmental monitoring and resource management. Its potential applications span hydrogeological studies, environmental conservation efforts, and sustainable water resource management practices in karstic terrains worldwide.

Keywords