Advances in Civil Engineering (Jan 2021)

Seismic Energy Response of SDOF Systems Subjected to Long-Period Ground Motion Records

  • Yu Cheng,
  • Yao-Rong Dong,
  • Li Qin,
  • Yuan-Yuan Wang,
  • Ye-Xue Li

DOI
https://doi.org/10.1155/2021/6655400
Journal volume & issue
Vol. 2021

Abstract

Read online

To provide an important reference for the energy-based seismic design of long-period structures, the elastoplastic dynamic analysis program is employed to study the seismic energy response of single-degree-of-freedom (SDOF) systems under two types of typical long-period ground motions. Then, the influencing relationships of external and internal factors on the energy response spectra under near-fault pulse-like and far-field harmonic ground motions are analyzed one by one. Study results are obtained as follows: within the whole period, all the input energy, hysteretic energy and damping energy spectra of SDOF systems under near-fault pulse-like and far-field harmonic ground motions, are larger than those under common ground motions, even the seismic energy response under far-field harmonic ground motions is larger than that under near-fault pulse-like ground motions. From the aspect of energy concept, the energy response spectra and energy distribution rule of SDOF systems are evaluated based on the intensity and spectral distribution under near-fault pulse-like and far-field harmonic ground motions. If the ratio of hysteretic energy to input energy (RHEIE) is determined, the hysteretic energy which must be dissipated by a structure would be derived by the method of energy-based design. The input energy and hysteretic energy are mainly influenced by damping ratio and ductility coefficient, while the yield stiffness ratio exerts minor effects. It indicates that reasonable structural design parameters would contribute to the hysteretic energy of a structure itself.