Metals (Nov 2020)

Thermal Activation and Ductile vs. Brittle Behavior of Microcracks in 3D BCC Iron Crystals under Biaxial Loading by Atomistic Simulations

  • Alena Uhnáková,
  • Anna Machová,
  • Petr Hora

DOI
https://doi.org/10.3390/met10111525
Journal volume & issue
Vol. 10, no. 11
p. 1525

Abstract

Read online

We present the results of free 3D molecular dynamics (MD) simulations, focused on the influence of temperature on the ductile-brittle behavior of a pre-existing central Griffith through microcrack (1¯10)[110] (crack plane/crack front) under biaxial loading σA and σB in tension mode I. At temperatures of 300 K and 600 K, the MD results provide new information on the threshold values of the stress intensity factor K and the energy release rate G, needed for the emission of {112} blunting dislocations that support crack stability. A simple procedure for the evaluation of thermal activation from MD results is proposed in the paper. 3D atomistic results are compared with continuum predictions on thermal activation of the crack induced dislocation generation. At elevated temperature T and biaxiality ratios σB/σA ≤ 0.8 dislocation emission in MD is observed, supported by thermal activation energy of about ~30 kBT. With increasing temperature, the ductile-brittle transition moves to a higher biaxiality ratios in comparison with the situation at temperature of ~0 K. Near the transition, dislocation emission occurs at lower loadings than expected by continuum predictions. For the ratios σB/σA ≥ 1, the elevated temperature facilitates (surprisingly) the microcrack growth below Griffith level.

Keywords