Insights into Imaging (Mar 2020)

Cortical ischaemic patterns in term partial-prolonged hypoxic-ischaemic injury—the inter-arterial watershed demonstrated through atrophy, ulegyria and signal change on delayed MRI scans in children with cerebral palsy

  • Anith Chacko,
  • Savvas Andronikou,
  • Ali Mian,
  • Fabrício Guimarães Gonçalves,
  • Schadie Vedajallam,
  • Ngoc Jade Thai

DOI
https://doi.org/10.1186/s13244-020-00857-8
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 13

Abstract

Read online

Abstract The inter-arterial watershed zone in neonates is a geographic area without discernible anatomic boundaries and difficult to demarcate and usually not featured in atlases. Schematics currently used to depict the areas are not based on any prior anatomic mapping, compared to adults. Magnetic resonance imaging (MRI) of neonates in the acute to subacute phase with suspected hypoxic-ischaemic injury (HII) can demonstrate signal abnormality and restricted diffusion in the cortical and subcortical parenchyma of the watershed regions. In the chronic stage of partial-prolonged hypoxic-ischaemic injury, atrophy and ulegyria can make the watershed zone more conspicuous as a region. Our aim is to use images extracted from a sizable medicolegal database (approximately 2000 cases), of delayed MRI scans in children with cerebral palsy, to demonstrate the watershed region. To achieve this, we have selected cases diagnosed on imaging as having sustained a term pattern of partial-prolonged HII affecting the hemispheric cortex, based on the presence of bilateral, symmetric atrophy with ulegyria. From these, we have identified those patients demonstrating injury along the whole watershed continuum as well as those demonstrating selective anterior or posterior watershed predominant injury for demonstration. Recognition of this zone is essential for diagnosing partial-prolonged hypoxic-ischaemic injury sustained in term neonates. The images presented in this pictorial review provide a template for identifying the cortical watershed distribution when there is milder regional (anterior, parasagittal, peri-Sylvian and posterior) watershed injury and for more severe injury where multiple regions are injured in combination or as a continuum.

Keywords