Energies (Mar 2020)
Validation of Novel PLL-driven PI Control Schemes on Supporting VSIs in Weak AC-Connections
Abstract
The integration of distributed energy resources (DERs) in modern power systems has substantially changed the local control capabilities of the grid since the majority of DERs are connected through a controlled dc/ac inverter interface. Such long-distance located DER installations, usually represented by current regulated dc sources, can inject large amounts of power into the main ac grid at points where the strength of the ac connection is low. The efficient and stable performance of such a power scheme is related to the capability of the control applied to retain the power extraction close to the maximum and simultaneously to regulate the dc-side voltage as well as the ac-side voltage magnitude at the weak ac connection point. This is implemented by designing the controllers of the voltage source inverters (VSIs) in a manner that reliably satisfies the above tasks. To this end, decentralized cascaded control schemes, driven by novel, locally implemented phase locked loops (PLLs), suitable to work in weak ac connections, are proposed for the VSI performance regulation by using new fast inner-loop proportional-integral (PI) current controllers. A decisive innovation is proposed by inserting an extra damping term in the inner-loop controllers to guarantee stability and convergence to the desired equilibrium. This is analytically proven by a rigorous analysis based on the entire nonlinear system model, where advanced Lyapunov-based methods are deployed in detail. As a good transient response of the VSI interface is indeed critical for the energy and grid system management, the conducted simulation and experimental results confirm that the proposed scheme efficiently supports the ac- and dc-side voltages of the VSI under different varying conditions in the power production or any voltage changes of the main grid.
Keywords