Frontiers in Cellular Neuroscience (Sep 2016)

Glucagon-like peptide-1 excites firing and increases GABAergic miniature postsynaptic currents (mPSCs) in gonadotropin-releasing hormone (GnRH) neurons of the male mice via activation of nitric oxide (NO) and suppression of endocannabinoid signaling pathways

  • Imre Farkas,
  • Csaba Vastagh,
  • Erzsébet Farkas,
  • Erzsébet Farkas,
  • Flóra Bálint,
  • Flóra Bálint,
  • Katalin Skrapits,
  • Erik Hrabovszky,
  • Csaba Fekete,
  • Csaba Fekete,
  • Zsolt Liposits,
  • Zsolt Liposits

DOI
https://doi.org/10.3389/fncel.2016.00214
Journal volume & issue
Vol. 10

Abstract

Read online

Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 μM). Intracellular application of the G-protein inhibitor GDP-beta-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by L-NAME (100 μM) or NPLA (1 μM) or intracellular scavenging of NO by CPTIO (1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using CB1 inverse-agonist AM251 (1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the TRPV1-antagonist AMG9810 (10 μM) or the FAAH-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid pathway indicating an anandamide-TRPV1-sensitive control of 2-AG production. Furthermore, GLP-1 immunoreactive axons innervated GnRH neurons in the hypothalamus suggesting that GLP-1 of both peripheral and neuronal sources can modulate GnRH neurons. RT-qPCR study confirmed the expression of GLP-1R and nNOS mRNAs in GnRH-GFP neurons. Immuno-electron microscopic analysis revealed the presence of neuronal nitric oxide synthase (nNOS) protein in GnRH neurons. These results indicate that GLP-1 exerts direct facilitatory actions via GLP-1R on GnRH neurons and modulates NO and 2-AG retrograde signaling mechanisms that control the presynaptic excitatory GABAergic inputs to GnRH neurons.

Keywords