Arabian Journal of Chemistry (Aug 2023)
Electrochemical determination of imatinib mesylate using TbFeO3/g-C3N4 nanocomposite modified glassy carbon electrode
Abstract
A new electrochemical sensor based on a glassy carbon electrode (GCE) modified by Tb (Terbium) FeO3/g-C3N4 (graphitic carbon nitride) nanocomposite has been developed. In order to characterize the nanocomposite produced, several techniques were employed, including X-ray diffraction (XRD), Fourier transform infrared, Field Emission Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy, Brunauer-Emmett-Teller, vibrating sample magnetometry, and Transmission Electron Microscopy (TEM). According to XRD data, the nanocomposite produced contained particles of about 36 ± 2 nm in size. TEM examination of the voltammetric response of the offered sensor (TbFeO3/g-C3N4 nanocomposite/glassy carbon electrode (GCE)) demonstrated a catalytic effect against imatinib. In optimized solution pH and scan rate conditions, this sensor demonstrated an excellent electrocatalytic response for detecting imatinib. Furthermore, the fabricated sensor demonstrated acceptable accuracy, reproducible behavior, and a high level of stability during all electrochemical tests. In addition, analytical parameters were determined and the results were compared with those from previous studies.