Heliyon (Jul 2024)
Albumin incorporation into recognising layer of HER2-specific magnetic nanoparticles as a tool for optimal targeting of the acidic tumor microenvironment
Abstract
Cancer is unquestionably a global healthcare challenge, spurring the exporation of novel treatment approaches. In recent years, nanomaterials have garnered significant interest with the greatest hopes for targeted nanoformulations due to their cell-specific delivery, improved therapeutic efficacy, and reduced systemic toxicity for the organism. The problem of successful clinical translation of nanoparticles may be related to the fact that most in vitro tests are performed at pH values of normal cells and tissues, ranging from 7.2 to 7.4. The extracellular pH values of tumors are characterized by a shift to a more acidic region in the range of 5.6–7.0 and represent a crucial target for enhancing nanoparticle delivery to cancer cells. Here we show the method of non-active protein incorporation into the surface of HER2-targeted nanoparticles to achieve optimal cellular uptake within the pH range of the tumor microenvironment. The method efficacy was confirmed in vitro and in vivo showing the maximum binding of nanoparticles to cells at a pH value 6.4. Namely, fluorescent magnetic nanoparticles, modified with HER2-recognising affibody ZHER2:342, with proven specificity in terms of HER2 recognition (with 62-fold higher cellular uptake compared to control nanoparticles) were designed for targeting cancer cells at slightly acidic pH values. The stabilizing protein, namely, bovine serum albumin, one of the major blood components with widespread availability and biocompatibility, was used for the decoration of the nanoparticle surface to alter the pH response of the targeting magnetic conjugates. The optimally designed nanoparticles showed a bell-shaped dependency of interaction with cancer cells in the pH range of 5.6–8.0 with maximum cellular uptake at pH value 6.4 close to that of the tumor microenvironment. In vivo experiments revealed that after i.v. administration, BSA-decorated nanoparticles exhibited 2 times higher accumulation in tumors compared to magnetic nanoparticles modified with affibody only. Thus, we demonstrated a valid method for enhancing the specificity of targeted nanoparticle delivery to cancer cells without changing the functional components of nanoparticles.