Establishment and Validation of Fourier Transform Infrared Spectroscopy (FT–MIR) Methodology for the Detection of Linoleic Acid in Buffalo Milk
Zhiqiu Yao,
Pei Nie,
Xinxin Zhang,
Chao Chen,
Zhigao An,
Ke Wei,
Junwei Zhao,
Haimiao Lv,
Kaifeng Niu,
Ying Yang,
Wenna Zou,
Liguo Yang
Affiliations
Zhiqiu Yao
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Pei Nie
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Xinxin Zhang
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Chao Chen
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Zhigao An
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Ke Wei
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Junwei Zhao
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Haimiao Lv
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Kaifeng Niu
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Ying Yang
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Wenna Zou
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Liguo Yang
National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology of the People’s Republic of China, Huazhong Agricultural University, Wuhan 430070, China
Buffalo milk is a dairy product that is considered to have a higher nutritional value compared to cow’s milk. Linoleic acid (LA) is an essential fatty acid that is important for human health. This study aimed to investigate and validate the use of Fourier transform mid-infrared spectroscopy (FT-MIR) for the quantification of the linoleic acid in buffalo milk. Three machine learning models were used to predict linoleic acid content, and random forest was employed to select the most important subset of spectra for improved model performance. The validity of the FT-MIR methods was evaluated in accordance with ICH Q2 (R1) guidelines using the accuracy profile method, and the precision, the accuracy, and the limit of quantification were determined. The results showed that Fourier transform infrared spectroscopy is a suitable technique for the analysis of linoleic acid, with a lower limit of quantification of 0.15 mg/mL milk. Our results showed that FT-MIR spectroscopy is a viable method for LA concentration analysis.