Chemistry (Sep 2024)
Novel Organomineral Material Containing an Acylpyrazolone Functionalized Ionic Liquid for the Extraction and Separation of Rare Earth Elements
Abstract
4-Acylpyrazolones are important ligands in analytical chemistry and technologies used for the separation and concentration of various metals. We have proposed a novel method for obtaining a material that consists of covalently immobilized functionalized ionic liquid on the surface of a mineral carrier featuring a coordination-active fragment of 4-acylpyrazolone. For its synthesis, we have introduced a strategy based on the quaternization of surface azolyl groups from 3-(1H-imidazol-1-yl)propyl silica with an alkylating reagent containing a 4-acylpyrazolone motif-4-(6-bromohexanoyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one. This method of covalent immobilization preserves the 1,3-dioxo fragment, which ensures the effective binding of metal ions. The success of this functionalization has been confirmed by IR and 13C NMR spectroscopy data, as well as by thermogravimetric analysis. The overall functional capacity was found to be 0.3 mmol/g. The potential of the synthesized organomineral material to concentrate five rare earth elements (REEs) representing the cerium (Eu(III), Sm(III)) and yttrium groups (Gd(III), Dy(III), Er(III)) has been demonstrated. It was shown that during extraction from multicomponent systems, both under static and dynamic preconcentration conditions, there is a competitive influence of analytes, and their separation can be evaluated under dynamic conditions based on dynamic output curves and calculated distribution coefficients. It was shown that for systems where Kd > 1.8, quantitative separation can be performed in a dynamic mode of sorption under selected conditions.
Keywords