BMJ Open Respiratory Research (Oct 2024)
Reference equations for DLNO and DLCO in Mexican Hispanics: influence of altitude and race
Abstract
Objectives This study aimed to evaluate pulmonary diffusing capacity for nitric oxide (DLNO) and pulmonary diffusing capacity for carbon monoxide (DLCO) in Mexican Hispanics born and raised at 2240 m altitude (midlanders) compared with those born and raised at sea level (lowlanders). It also aimed to assess the effectiveness of race-specific reference equations for pulmonary diffusing capacity (white people vs Mexican Hispanics) in minimising root mean square errors (RMSE) compared with race-neutral equations.Methods DLNO, DLCO, alveolar volume (VA) and gas transfer coefficients (KNO and KCO) were measured in 392 Mexican Hispanics (5 to 78 years) and compared with 1056 white subjects (5 to 95 years). Reference equations were developed using segmented linear regression (DLNO, DLCO and VA) and multiple linear regression (KNO and KCO) and validated with Least Absolute Shrinkage and Selection Operator. RMSE comparisons between race-specific and race-neutral models were conducted using repeated k-fold cross-validation and random forests.Results Midlanders exhibited higher DLCO (mean difference: +4 mL/min/mm Hg), DLNO (mean difference: +7 mL/min/mm Hg) and VA (mean difference: +0.17 L) compared with lowlanders. The Bayesian information criterion favoured race-specific models and excluding race as a covariate increased RMSE by 61% (DLNO), 18% (DLCO) and 4% (KNO). RMSE values for VA and KCO were comparable between race-specific and race-neutral models. For DLCO and DLNO, race-neutral equations resulted in 3% to 6% false positive rates (FPRs) in Mexican Hispanics and 20% to 49% false negative rates (FNRs) in white subjects compared with race-specific equations.Conclusions Mexican Hispanics born and raised at 2240 m exhibit higher DLCO and DLNO compared with lowlanders. Including race as a covariate in reference equations lowers the RMSE for DLNO, DLCO and KNO and reduces FPR and FNR compared with race-neutral models. This study highlights the need for altitude-specific and race-specific reference equations to improve pulmonary function assessments across diverse populations.