Jurnal Teknologi Informasi dan Ilmu Komputer (Feb 2020)

Desain Faktorial untuk Pembuktian Teori Masters dalam Penentuan Jumlah Lapisan dan Neuron Tersembunyi pada Peramalan Multivariat dengan Jaringan Syaraf Tiruan

  • Dwi Ayu Lusia,
  • Awalludiyah Ambarwati

Journal volume & issue
Vol. 7, no. 1

Abstract

Read online

Jaringan syaraf tiruan merupakan metode yang sangat sering digunakan untuk peramalan. Akurasi jaringan syaraf tiruan dipengaruhi oleh jumlah lapisan tersembunyi dan neuron didalamnya. Salah satu teori yang membahas tentang jumlah lapisan tersembunyi dan neuron didalamnya adalah Teori Masters. Teori Masters merumuskan jumlah neuron berdasarkan aturan geometric pyramid. Selain itu, Teori Masters juga mengungkapkan bahwa tidak ada alasan menggunakan lebih dari dua lapisan tersembunyi. Penelitian ini bertujuan untuk membuktikan kebenaran Teori Masters menggunakan metode desain faktorial. Kombinasi yang digunakan ialah 1, 5, 10, dan 15 neuron tersembunyi. Hasil penelitian menggunakan metode desain faktorial, menunjukkan bahwa rumus teori Masters memiliki peringkat yang cukup baik yaitu 50% teratas untuk data training maupun testing. Aturan geometric pyramid memiliki akurasi yang baik pada data training. Akan tetapi aturan tersebut tidak berlaku pada data testing. Model jaringan syaraf tiruan dengan empat lapisan tersembuyi memiliki nilai akurasi RMSE (Root Mean Square Error) terbaik pada data training dan testing. Semakin banyak lapisan tersembunyi maka semakin baik nilai RMSE data training maupun data testing. Dengan demikian dapat disimpulkan bahwa Teori Masters yang menyebutkan bahwa tidak ada alasan menggunakan lebih dari dua lapisan tersembunyi, terbukti tidak valid. Abstract Artificial neural networks is a forecasting method a very common method for forecasting. Accuracy of artificial neural networks is influenced by the number of hidden layers and neurons in them. One theory that discusses the number of hidden layers and neurons in them is the Masters Theory. Masters Theory formulates the number of neurons based on geometric pyramid rules. In addition, the Masters Theory also reveals that there is no reason to use more than two hidden layers. This study aims to prove the Masters Theory using factorial design methods. The combinations used are 1, 5, 10, and 15 hidden neurons. Based on factorial design methods in this study, it can be concluded that the formula for many neurons has adequate rating of 50% above, both training and testing data. Tthe geometric pyramid rules have good accuracy in training data. However, this rule does not apply to data testing. The artificial neural network model with four hidden layers has the best RMSE (Root Mean Square Error) accuracy values in training and testing data. The more hidden layers will obtain better RMSE in both training dan testing datasets. Thus, the Masters Theory which states that there is no reason to use more than two hidden layers, proved to be invalid.