Quantum Beam Science (May 2022)

Major and Minor Contributions to X-ray Characteristic Lines in the Framework of the Boltzmann Transport Equation

  • Jorge E. Fernandez,
  • Francesco Teodori

DOI
https://doi.org/10.3390/qubs6020020
Journal volume & issue
Vol. 6, no. 2
p. 20

Abstract

Read online

The emission of characteristic lines after X-ray excitation is usually explained as the consequence of two independent and consecutive physical processes: the photoelectric ionization produced by incoming photons and the successive spontaneous atomic relaxation. However, the photoelectric effect is not the only ionization mechanism driven by incoming photons. It has been recently shown that Compton ionization is another possible process that contributes not negligibly to the ionization of the L and M shells. In addition, the secondary electrons from these two interactions, photoelectric and Compton, are also able to ionize the atom by means of so-called impact ionization. Such a contribution has been recently described, showing that it can be relevant in cases of monochromatic excitation for certain lines and elements. A third mechanism of line modification is the so-called self-enhancement produced by absorption of the tail of Lorentzian distribution of the characteristic line, which mainly modifies the shape of the lines but also produces an intensity increase. The four effects contribute to the formation of the characteristic line and must be considered to obtain a precise picture in terms of the shell and the element. This work furnishes a review of these contributions and their formal theoretical descriptions. It gives a complete picture of the photon kernel, describing the emission of characteristic X-rays comprising the main photoelectric contribution and the three effects of lower extent. All four contributions to the characteristic X-ray line must be followed along successive photon interactions to describe multiple scattering using the Boltzmann transport equation for photons.

Keywords