iForest - Biogeosciences and Forestry (Oct 2020)

Spatial modeling of the ecological niche of Pinus greggii Engelm. (Pinaceae): a species conservation proposal in Mexico under climatic change scenarios

  • Martínez-Sifuentes AR,
  • Villanueva-Díaz J,
  • Manzanilla-Quiñones U,
  • Becerra-López JL,
  • Hernández-Herrera JA,
  • Estrada-Ávalos J,
  • Velázquez-Pérez AH

DOI
https://doi.org/10.3832/ifor3491-013
Journal volume & issue
Vol. 13, no. 1
pp. 426 – 434

Abstract

Read online

Pinus greggii is a species of socio-economic importance in terms of wood production and environmental services in Mexico, though it is restricted by particular environmental conditions to the Sierra Madre Occidental. Species distribution models are geospatial tools widely used in the identification and delineation of species’ distribution areas and zones susceptible to climate change. The objectives of this study were to: (i) model and quantify the environmentally suitable area for Pinus greggii in Mexico, and possible future distributions under four different scenarios of climate change; (ii) identify the most relevant environmental variables that will possibly drive changes in future distribution; and (iii) to propose adequate zones for the species’ conservation in Mexico. Some 438 records of Pinus greggii from several national and international databases were obtained, and duplicates were discarded to avoid overestimations in the models. Climatic, edaphic, and topographic variables were used and 100 distribution models for current and future scenarios were generated using the Maxent software. The best model had an area under the curve (AUC) of 0.88 and 0.93 for model training and validation, respectively, a partial ROC of 1.94, and a significant Z test (p<0.01). The current estimated suitable area of Pinus greggii in Mexico was 617,706.04 ha. The most relevant environmental variables for current distribution were annual mean temperature, mean temperature of coldest quarter, and slope. For the 2041-2060 models, annual mean temperature, precipitation of coldest quarter, and slope were the most important drivers. The use of climatic models allowed to predict a future decrease in suitable habitat for the species by 2041-2060, ranging from 48,403.85 (7.8% - HadGEM2-ES RCP 8.5 model) to 134,680.17 ha (21.8% - CNRM-CM5 RCP 4.5). Spatial modeling of current and future ecological niche of Pinus greggii also allowed to delineate two zones for in situ conservation and restoration purpose in northeastern (Nuevo Leon) and central (Hidalgo) Mexico.

Keywords