Royal Society Open Science (Oct 2024)

Modelling human navigation and decision dynamics in a first-person herding task

  • Ayman bin Kamruddin,
  • Hannah Sandison,
  • Gaurav Patil,
  • Mirco Musolesi,
  • Mario di Bernardo,
  • Michael J. Richardson

DOI
https://doi.org/10.1098/rsos.231919
Journal volume & issue
Vol. 11, no. 10

Abstract

Read online

This study investigated whether dynamical perceptual-motor primitives (DPMPs) could also be used to capture human navigation in a first-person herding task. To achieve this aim, human participants played a first-person herding game, in which they were required to corral virtual cows, called targets, into a specified containment zone. In addition to recording and modelling participants’ movement trajectories during gameplay, participants’ target-selection decisions (i.e. the order in which participants corralled targets) were recorded and modelled. The results revealed that a simple DPMP navigation model could effectively reproduce the movement trajectories of participants and that almost 80% of the participants’ target-selection decisions could be captured by a simple heuristic policy. Importantly, when this policy was coupled to the DPMP navigation model, the resulting system could successfully simulate and predict the behavioural dynamics (movement trajectories and target-selection decisions) of participants in novel multi-target contexts. Implications of the findings for understanding complex human perceptual-motor behaviour and the development of artificial agents for robust human–machine interaction are discussed.

Keywords