Microbiology Spectrum (Oct 2021)

Antimicrobial Resistance and Type III Secretion System Virulotypes of Pseudomonas aeruginosa Isolates from Dogs and Cats in Primary Veterinary Hospitals in Japan: Identification of the International High-Risk Clone Sequence Type 235

  • Wataru Hayashi,
  • Katsutoshi Izumi,
  • Satoshi Yoshida,
  • Shino Takizawa,
  • Kanae Sakaguchi,
  • Keita Iyori,
  • Ken-ichi Minoshima,
  • Shinya Takano,
  • Maki Kitagawa,
  • Yukiko Nagano,
  • Noriyuki Nagano

DOI
https://doi.org/10.1128/Spectrum.00408-21
Journal volume & issue
Vol. 9, no. 2

Abstract

Read online

ABSTRACT This study aimed to investigate the current trends in antimicrobial resistance among Pseudomonas aeruginosa clinical isolates of canine and feline origin and the prevalence of their sequence types (STs) and type III secretion system (T3SS) virulotypes, which remains unknown in Japan. A total of 240 nonduplicate clinical isolates of P. aeruginosa from dogs (n = 206) and cats (n = 34) collected from 152 primary care animal hospitals between August 2017 and October 2019 were examined. PCR detection of T3SS genes (exoU and exoS) and carbapenemase genes, multilocus sequence typing, and whole-genome sequencing of the representative carbapenem-resistant isolates were performed. Resistance rates to imipenem and meropenem were 6.67% and 2.08%, respectively. A high resistance rate (17.92%) was encountered with ciprofloxacin. The exoU−/exoS+ was the predominant T3SS virulotype (195 isolates, 81.3%), followed by exoU+/exoS− (35 isolates, 14.6%), exoU−/exoS− (7 isolates, 2.9%), and exoU+/exoS+ (3 isolates, 1.3%). A high frequency of the high-risk clones ST235 and clonal complex 235 (CC 235) (28.9%), followed by ST357 (21.1%), were noted among these 38 exoU+ isolates. Seventeen carbapenem-resistant isolates comprising 2 exoU+ isolates, including an ST235 isolate, and 15 exoU−/exoS+ isolates belonging to non-ST235/CC235 were detected, of which all were carbapenemase negative. Different combinations of mutations among oprD, efflux pump regulatory genes, and AmpC β-lactamase regulatory genes were identified among representative isolates with high-level resistance to imipenem. This study emphasizes the occurrence of ST235 isolates among companion animals, which may represent a threat to public health because of the ability of this clone to acquire and spread resistance elements, including carbapenemase genes. IMPORTANCE Pseudomonas aeruginosa is an environmentally ubiquitous and important opportunistic human pathogen responsible for life-threatening health care-associated infections. Because of its extensive repertoire of virulence determinants and intrinsic and acquired resistance mechanisms, the organism could be one of the most clinically and epidemiologically important causes of morbidity and mortality. In recent years, worldwide spreading of multidrug-resistant high-risk clones, particularly sequence type 235 (ST235), has become a serious public health threat. Companion animals which share much of their living environment with humans could be important reservoirs and spreaders of antimicrobial-resistant bacteria and resistance genes of clinical importance in humans, such as extended-spectrum β-lactamase-producing Enterobacterales and methicillin-resistant Staphylococcus aureus. However, antimicrobial resistance, virulence, and genotyping of P. aeruginosa in companion animals remain largely unknown. This work sheds light on the potential spread of high-risk clones in companion animals.

Keywords