Comptes Rendus. Mathématique (Nov 2024)
From homogeneous metric spaces to Lie groups
Abstract
We study homogeneous metric spaces, by which we mean connected, locally compact metric spaces whose isometry group acts transitively.After a review of a number of classical results, we use the Gleason–Iwasawa–Montgomery–Yamabe–Zippin structure theory to show that for all positive $ \epsilon $, each such space is $ (1,\epsilon ) $-quasi-isometric to a connected metric Lie group (metrized with a left-invariant distance that is not necessarily Riemannian).Next, we develop the structure theory of Lie groups to show that every homogeneous metric manifold is homeomorphically roughly isometric to a quotient space of a connected amenable Lie group, and roughly isometric to a simply connected solvable metric Lie group.Third, we investigate solvable metric Lie groups in more detail, and expound on and extend work of Gordon and Wilson [31, 32] and Jablonski [44] on these, showing, for instance, that connected solvable Lie groups may be made isometric if and only if they have the same real-shadow.Finally, we show that homogeneous metric spaces that admit a metric dilation are all metric Lie groups with an automorphic dilation.
Keywords