AIMS Mathematics (Sep 2024)
On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials
Abstract
This work focuses on the study of approximation properties of functions by Szász type operators involving Frobenius–Euler–Simsek-type polynomials, which have become more popular recently because of their special characteristics and functional organization. The convergence properties such as uniformly convergence and pointwise convergence in terms of modulus of continuity and Peetre-$ \it K $ functional are investigated with the help of these sequences of operators in depth. This paper also includes the estimation of the error of the approximation of these sequences of operators to some particular class of functions. The estimates are depicted using the Maple scientific computing program and presented in tables.
Keywords