Energy and AI (Nov 2022)
Visualization-based prediction of dendritic copper growth in electrochemical cells using convolutional long short-term memory
Abstract
Electrodeposition in electrochemical cells is one of the leading causes of its performance deterioration. The prediction of electrodeposition growth demands a good understanding of the complex physics involved, which can lead to the fabrication of a probabilistic mathematical model. As an alternative, a convolutional Long short-term memory architecture-based image analysis approach is presented herein. This technique can predict the electrodeposition growth of the electrolytes, without prior detailed knowledge of the system. The captured images of the electrodeposition from the experiments are used to train and test the model. A comparison between the expected output image and predicted image on a pixel level, percentage mean squared error, absolute percentage error, and pattern density of the electrodeposit are investigated to assess the model accuracy. The randomness of the electrodeposition growth is outlined by investigating the fractal dimension and the interfacial length of the electrodeposits. The trained model predictions show a significant promise between all the experimentally obtained relevant parameters with the predicted one. It is expected that this deep learning-based approach for predicting random electrodeposition growth will be of immense help for designing and optimizing the relevant experimental scheme in near future without performing multiple experiments.