Materials Research (Dec 2012)

Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling

  • Abhijit Banerjee,
  • Srinjoy Bid,
  • Hema Dutta,
  • Sandeep Chaudhuri,
  • Dipankar Das,
  • Swapan Kumar Pradhan

Journal volume & issue
Vol. 15, no. 6
pp. 1022 – 1028

Abstract

Read online

Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol%) mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.

Keywords