Animals (Mar 2021)

Feeding a Negative Dietary Cation-Anion Difference to Female Goats Is Feasible, as Indicated by the Non-Deleterious Effect on Rumen Fermentation and Rumen Microbial Population and Increased Plasma Calcium Level

  • Kang Yang,
  • Xingzhou Tian,
  • Zhengfa Ma,
  • Wenxuan Wu

DOI
https://doi.org/10.3390/ani11030664
Journal volume & issue
Vol. 11, no. 3
p. 664

Abstract

Read online

The dietary cation-anion difference (DCAD) has been receiving increased attention in recent years; however, information on rumen fermentation, cellulolytic bacteria populations, and microbiota of female goats fed a negative DCAD diet is less. This study aimed to evaluate the feasibility of feeding a negative DCAD diet for goats with emphasis on rumen fermentation parameters, cellulolytic bacteria populations, and microbiota. Eighteen female goats were randomly blocked to 3 treatments of 6 replicates with 1 goat per replicate. Animals were fed diets with varying DCAD levels at +338 (high DCAD; HD), +152 (control; CON), and −181 (low DCAD; LD). This study lasted 45 days with a 30-d adaption and 15-d trial period. The results showed that the different DCAD levels did not affect the rumen fermentation parameters including pH, buffering capability, acetic acid, propionic acid, butyric acid, sum of acetic acid, propionic acid, and butyric acid, or the ratio of acetic acid/propionic acid (p > 0.05). The 4 main ruminal cellulolytic bacteria populations containing Fibrobacter succinogenes, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Ruminococcus albus did not differ from DCAD treatments (p > 0.05). There was no difference in bacterial richness and diversity indicated by the indices Chao, Abundance Coverage-based Estimator (Ace), or Simpson and Shannon, respectively (p > 0.05), among 3 DCAD levels. Both principal coordinate analysis (PCoA) weighted UniFrac distance and unweighted UniFrac distance showed no difference in the composition of rumen microbiota for CON, HD, and LD (p > 0.05). At the phylum level, Bacteroidetes was the predominant phylum followed by Firmicutes, Synergistetes, Proteobacteria, Spirochaetae, and Tenericutes, and they showed no difference (p > 0.05) in relative abundances except for Firmicutes, which was higher in HD and LD compared to CON (p p > 0.05). The level of DCAD had no effect (p > 0.05) on growth performance (p > 0.05). Urine pH in LD was lower than HD and CON (p p < 0.05). In summary, we conclude that feeding a negative DCAD has no deleterious effects on rumen fermentation and rumen microbiota and can increase the blood calcium level, and is therefore feasible for female goats.

Keywords