Enhancing bioactivity and biocompatibility of polyetheretherketone (PEEK) for dental and maxillofacial implants: A novel sequential soaking process
Wenqing Meng,
Yifei Nie,
Jiajia Zhang,
Ludan Qin,
Xueye Liu,
Tongtong Ma,
Junling Wu
Affiliations
Wenqing Meng
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
Yifei Nie
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
Jiajia Zhang
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
Ludan Qin
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
Xueye Liu
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
Tongtong Ma
Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
Junling Wu
Corresponding author. No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China.; Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
Polyetheretherketone (PEEK) exhibits excellent biocompatibility, fatigue resistance, and an elastic modulus similar to bone, presenting broad application prospects in the field of dental and maxillofacial implants. However, the bioinertness of PEEK limits its applications. In this study, we developed a method to generate biocompatible and bioactive PEEK through a simple sequential soaking process, aimed at inducing bone differentiation and enhancing antibacterial properties. Initially, a three-dimensional (3D) porous network was introduced on the PEEK surface by soaking in concentrated sulfuric acid and water. Subsequently, the sulfonated PEEK surface was treated with oxygen plasma, followed by immersion in a dopamine solution to coat a polydopamine (PDA) layer. Finally, polydopamine phosphate ester-modified 3D porous PEEK was obtained through the reaction of phosphoryl chloride with surface phenolic hydroxyl groups. Systematic studies were conducted using scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle analysis, cell proliferation and adhesion, osteogenic gene expression detection, alkaline phosphatase staining, alizarin red staining, and bacterial culture. Overall, compared to unmodified PEEK, the modified PEEK significantly enhanced in vitro cell proliferation and adhesion, osteogenic differentiation, and antibacterial properties. The simple surface modification measures combined in this study may represent a promising technology and could facilitate the application of PEEK in dental and maxillofacial implants.