Swiss Medical Weekly (Sep 2023)

Accuracy in detecting atrial fibrillation in single-lead ECGs: an online survey comparing the influence of clinical expertise and smart devices

  • Simon Weidlich,
  • Diego Mannhart,
  • Teodor Serban,
  • Philipp Krisai,
  • Sven Knecht,
  • Jeanne du Fay de Lavallaz,
  • Tatjana Müller,
  • Beat Schaer,
  • Stefan Osswald,
  • Michael Kühne,
  • Christian Sticherling,
  • Patrick Badertscher

DOI
https://doi.org/10.57187/smw.2023.40096
Journal volume & issue
Vol. 153, no. 9

Abstract

Read online

BACKGROUND: Manual interpretation of single-lead ECGs (SL-ECGs) is often required to confirm a diagnosis of atrial fibrillation. However accuracy in detecting atrial fibrillation via SL-ECGs may vary according to clinical expertise and choice of smart device. AIMS: To compare the accuracy of cardiologists, internal medicine residents and medical students in detecting atrial fibrillation via SL-ECGs from five different smart devices (Apple Watch, Fitbit Sense, KardiaMobile, Samsung Galaxy Watch, Withings ScanWatch). Participants were also asked to assess the quality and readability of SL-ECGs. METHODS: In this prospective study (BaselWearableStudy, NCT04809922), electronic invitations to participate in an online survey were sent to physicians at major Swiss hospitals and to medical students at Swiss universities. Participants were asked to classify up to 50 SL-ECGs (from ten patients and five devices) into three categories: sinus rhythm, atrial fibrillation or inconclusive. This classification was compared to the diagnosis via a near-simultaneous 12-lead ECG recording interpreted by two independent cardiologists. In addition, participants were asked their preference of each manufacturer’s SL-ECG. RESULTS: Overall, 450 participants interpreted 10,865 SL-ECGs. Sensitivity and specificity for the detection of atrial fibrillation via SL-ECG were 72% and 92% for cardiologists, 68% and 86% for internal medicine residents, 54% and 65% for medical students in year 4–6 and 44% and 58% for medical students in year 1–3; p <0.001. Participants who stated prior experience in interpreting SL-ECGs demonstrated a sensitivity and specificity of 63% and 81% compared to a sensitivity and specificity of 54% and 67% for participants with no prior experience in interpreting SL-ECGs (p <0.001). Of all participants, 107 interpreted all 50 SL-ECGs. Diagnostic accuracy for the first five interpreted SL-ECGs was 60% (IQR 40–80%) and diagnostic accuracy for the last five interpreted SL-ECGs was 80% (IQR 60–90%); p <0.001. No significant difference in the accuracy of atrial fibrillation detection was seen between the five smart devices; p = 0.33. SL-ECGs from the Apple Watch were considered as having the best quality and readability by 203 (45%) and 226 (50%) participants, respectively. CONCLUSION: SL-ECGs can be challenging to interpret. Accuracy in correctly identifying atrial fibrillation depends on clinical expertise, while the choice of smart device seems to have no impact.