Materials (May 2017)

Solid-State Method Synthesis of SnO2-Decorated g-C3N4 Nanocomposites with Enhanced Gas-Sensing Property to Ethanol

  • Jianliang Cao,
  • Cong Qin,
  • Yan Wang,
  • Huoli Zhang,
  • Guang Sun,
  • Zhanying Zhang

DOI
https://doi.org/10.3390/ma10060604
Journal volume & issue
Vol. 10, no. 6
p. 604

Abstract

Read online

SnO2/graphitic carbon nitride (g-C3N4) composites were synthesized via a facile solid-state method by using SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), thermogravimetry-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), and N2 sorption. The results indicated that the composites possessed a two-dimensional (2-D) structure, and the SnO2 nanoparticles were highly dispersed on the surface of the g-C3N4 nanosheets. The gas-sensing performance of the samples to ethanol was tested, and the SnO2/g-C3N4 nanocomposite-based sensor exhibited admirable properties. The response value (Ra/Rg) of the SnO2/g-C3N4 nanocomposite with 10 wt % 2-D g-C3N4 content-based sensor to 500 ppm of ethanol was 550 at 300 °C. However, the response value of pure SnO2 was only 320. The high surface area of SnO2/g-C3N4-10 (140 m2·g−1) and the interaction between 2-D g-C3N4 and SnO2 could strongly affect the gas-sensing property.

Keywords