Applied Sciences (Sep 2022)

Learning to Optimise a Swarm of UAVs

  • Gabriel Duflo,
  • Grégoire Danoy,
  • El-Ghazali Talbi,
  • Pascal Bouvry

DOI
https://doi.org/10.3390/app12199587
Journal volume & issue
Vol. 12, no. 19
p. 9587

Abstract

Read online

The use of Unmanned Aerial Vehicles (UAVs) has shown a drastic increase in interest in the past few years. Current applications mainly depend on single UAV operations, which face critical limitations such as mission range or resilience. Using several autonomous UAVs as a swarm is a promising approach to overcome these. However, designing an efficient swarm is a challenging task, since its global behaviour emerges solely from local decisions and interactions. These properties make classical multirobot design techniques not applicable, while evolutionary swarm robotics is typically limited to a single use case. This work, thus, proposes an automated swarming algorithm design approach, and more precisely, a generative hyper-heuristic relying on multi-objective reinforcement learning, that permits us to obtain not only efficient but also reusable swarming behaviours. Experimental results on a three-objective variant of the Coverage of a Connected UAV Swarm problem demonstrate that it not only permits one to generate swarming heuristics that outperform the state-of-the-art in terms of coverage by a swarm of UAVs but also provides high stability. Indeed, it is empirically demonstrated that the model trained on a certain class of instances generates heuristics and is capable of performing well on instances with a different size or swarm density.

Keywords